Earth Friendly Concrete

Reduce your project's carbon footprint

THE CONCRETE PEOPLE

If a reduced carbon footprint is an important part of your project's specification then Earth Friendly Concrete will help you achieve your goals.

Earth Friendly Concrete (EFC[®]) / Geopolymer Concrete is a cement-free concrete which typically offers between a 75% and 87% saving in embodied carbon compared to standard concrete mixes and helps to reduce the carbon footprint associated with concrete use in construction projects.

Contents

What Is EFC [®] Concrete?	4
Applications	5
Benefits And Features	6-7
Building A Highly Successful Track Record	8-11
Let's Get Technical	12-13
Calculating Embodied CO ₂ And Carbon Footprints	14

Cement production accounts for of all global Carbon Emissions

> EFC[®] does not use Portland Cement, using GGBS and Fly Ash instead and saving typically 180 kg+ of carbon per metre of concrete.

Save 180 tonnes (on a grade C32/40 concrete mix) of embodied carbon on an average 1000m³ pour by using EFC[®]

EFC[®] can be used for the same applications as traditional concrete.

It has excellent mechanical and structural properties and offers the highest chemical protection, with low shrinkage rates. In addition, EFC[®] has a low thermal gradient providing very low temperature rises in cast deep sections.

What Is EFC[®]

EFC[®] is Earth Friendly Concrete supplied by Capital Concrete under an agreement with Australian company, Wagner Group, within the Greater London area. It is more sustainable than traditional concrete, typically 75 - 87% less embodied CO_2 or -180kg CO_2 per cubic metre, helping your project reach sustainability targets.

Geopolymer concrete is made from a binder consisting of 75% Ground Granulated Blast Furnace Slag (GGBS), 25% Pulverized Fuel Ash (PFA) with zero Portland Cement, this is combined with normal constituent materials of the concrete mix including aggregate types and weight and Alkali Activators together with a super plasticizing admixture with or without extended open life as required for any project.

The Geopolymer binders are usually derived from waste products, such as Ground Granulated Blast Furnace Slag (GGBS), Pulverized Fuel Ash (PFA) and may include rice husk ash, palm oil and fuel ash, which are high in aluminosilicates and are activated by adding a strong alkali solution to produce an aluminosilicate gel which is the usual chemical reaction produced by Portland Cement.

To place an order or to talk to us about the requirements for your project please call our team on 020 3974 0520.

Applications

EFC[®] may be utilised in all applications where traditional concrete is used, for example, slabs, walls, columns, footings etc., traditional slip form paving including machine paving, deck units and tunnel segments in major infrastructure projects.

Benefits And Features^{*} Of Using EFC[®]

Sustainable

Zero Portland Cement

Typical carbon content of up to 87% less embodied CO_2 or -180kg CO_2 per cubic metre Reuses industry waste

by-products slag and fly ash

Reliable

40% less shrinkage (typically 350 μξ)

Very low heat development (circa ~15°C)

Less susceptible to cracking

Looks Great

- Natural off-white colour
- Clean off-form finish
 Compatible with colour pigments and oxides

Structural

- Same compressive strength as standard concrete
- 30% higher flexural tensile strength
- High early strength and good final strength gain

High Durability

- Acid and sulphate resistant Fire resistant to
- AS1530 Part 4 2005
- Chloride ion ingress resistant
- High permeability resistance and reduced water ingress

Easy To Work With

Batched in a concrete plant

- Delivered in an agitator/ traditional concrete mixer Placed by pump, chute or
- pre-cast Can be disposed of under European Waste - Catalogue code 17 01 01 (concrete)

Key Features

- Performs better than traditional concrete in marine situations with a high chloride resistance rate.
- Aggregate proportions are typically the same as traditional concrete.
- All commercial grades: 10 to 60 MPa compressive strength can be achieved.
- EFC[®] Concrete is supplied by Capital Concrete from batching plants which are all third party accredited by QSRMC

To place an order or to talk to us about the requirements for your project please call our team on 020 3974 0520.

* when compared with traditional concrete.

Building A Highly Successful Track Record

Recent Projects

Capital Concrete's dedicated team has over 150 years' experience in the concrete industry and has worked on some of London's most prestigious and complex projects.

We understand construction in London, so not only are you in good hands, chances are you already know some of us well. We have been supplying EFC[®] since January 2020 in the Greater London area for numerous temporary and permanent works.

Wagner has been developing EFC[®] over the past 12 years. The first commercial use in permanent works was in 2012 where it was used in floor beams for the Global Change Institute in Brisbane.

Temporary Works

"EFC[®] was a very successful choice on this high profile project as it has the same compressive strength as standard concrete with 40% less shrinkage and is less susceptible to cracking. It provided HS2 with a saving of 180kgs CO2/m³ on the 3,000m³ of EFC[®] delivered by Capital Concrete." Luke Smith, Managing Director, Capital Concrete

Temporary Works

"The reduction in the carbon footprint achieved by using EFC[®] gave us a competitive advantage. Our thanks to Capital Concrete who made the whole supply process on this new and innovative product run smoothly."

Stuart Norman, Managing Director, Keltbray Piling

Permanent Works

"Our successful trials and use of EFC[®] have furthered our ambition to promote and use this novel low carbon concrete more widely. Capital Concrete's support and expertise, alongside their close relationship with Wagners has really helped us raise aspirations for using EFC[®] in structural applications, which is beginning to translate into opportunities for our business. EFC[®]'s technical performance has been impressive, with our testing supporting existing evidence of rapid strength gain to high final strength and a low heat of hydration."

Simon Houska, Technical Manager, Bryne Brothers

いうとうたいであるとなどの

Let's Get Technical

EFC[®] and Existing Standards *

Earth Friendly Concrete is a relatively new novel product to the UK however, it has achieved compliance with DIN EN 196-2 and DI 1045-2 in Germany and is subject to rigorous ongoing testing across its use globally.

In the UK EN 206 and BS8500 govern the specification, performance, production and conformity requirements for concrete, and are based on a general and historic assumption that concrete mixes include CEM I.

Alkali-activated cementitious material (AACM) and geopolymer binders in concretes may be used in compliance with BS PAS 8820.

EFC[®] mix design approval is assisted by the use of test data for a route to specification, and Wagners together with Capital Concrete can help you achieve this.

*Byrne Brothers Wagners' Earth Friendly Concrete® An evaluation of our use to date.

EFC[®] vs UK cement blends kg CO₂ per tonne

EFC* uses between 75% and 87% less embodied CO_2 when compared to UK 100% OPC and UK 50% GGBS mixes.

Calculating Embodied CO₂ And Carbon Footprints

CO, contents for CEM I, GGBS blends and EFC® concrete

	BY TONNE OF BINDER								
	CEM I	CEM IIA	CEM IIB-S	S CEM IIIA			CEM IIIB		EFC
GGBS - kg/t	0	200	300	400	500	600	700	800	GGBS/PFA +
CEM I - kg/t	1000	800	700	600	500	400	300	200	ACTIVATOR
1 tonne binder	860	703.9	625.9	547.8	469.8	391.8	313.7	235.7	117.6

				BY	CEMENTITIO	JS CONTENT			
KG/M3									
300	258	211	188	164	141	118	94	71	35
310	267	218	194	170	146	121	97	73	36
320	275	225	200	175	150	125	100	75	38
330	284	232	207	181	155	129	104	78	39
340	292	239	213	186	160	133	107	80	40
350	301	246	219	192	164	137	110	82	41
360	310	253	225	197	169	141	113	85	42
370	318	260	232	203	174	145	116	87	44
380	327	267	238	208	179	149	119	90	45
390	335	275	244	214	183	153	122	92	46
400	344	282	250	219	188	157	125	94	47
410	353	289	257	225	193	161	129	97	48
420	361	296	263	230	197	165	132	99	49
430	370	303	269	236	202	168	135	101	51
440	378	310	275	241	207	172	138	104	52
450	387	317	282	247	211	176	141	106	53
460	396	324	288	252	216	180	144	108	54
470	404	331	294	257	221	184	147	111	55
480	413	338	300	263	226	188	151	113	56
490	421	345	307	268	230	192	154	115	58
500	430	352	313	274	235	196	157	118	59
510	439	359	319	279	240	200	160	120	60
520	447	366	325	285	244	204	163	123	61
530	456	373	332	290	249	208	166	125	62
540	464	380	338	296	254	212	169	127	64
550	473	387	344	301	258	215	173	130	65

NOTES:

1. CO2e contensts are based on raw material values for cementitious blend and content only

CO2e value for EFC is based on Autralian values provided by Wagner

3. CO2e contributions from aggregates, production and transport are not included as it is considered that these will be similar for all types of concrete.

4. GGBS proportions are those normally used by suppliers

MPA DECLARED VALUES 2020 -						
TO FACTORY GATE						
CO2e kg/kg						
CEMI	0.860					
GGBS	0.0796					
PFA	0.0001					
Limestone	0.0080					
Agg	0.0026					
Rebar	0.4120					
	ULTRA LOW	0-50				
	VERY LOW	51-100				
	LOW	101-150				
	MODERATE	151-200				
	AVERAGE	201-250				
HIGH 251-300						
	VERY HIGH	>301				

Taking a typical C50/60 concrete mix in the UK with 420kg/m³ cementitious content containing 30% GGBS i.e. a CEM IIB-S, table 1 shows that the ECO₂ of the binder content of 1m³ of this type of concrete would be approximately 263kg/m³. EFC[®] concrete with a similar binder content of 420kg/m³ would have a ECO₂ value of 49kg/m³ therefore a reduction of approximately 214kg of embodied carbon in each cubic metre of concrete – 81% saving.

Sales office

020 3974 0520 enquiries@capitalconcrete.co.uk www.capitalconcrete.co.uk

Plant locations

1. Bow

Chapman Road, Bow, London E9 5DW

2. Cricklewood

Cricklewood Railway Yard, 400 Edgware Road, London NW2 6ND

3. Croydon

Endeavour Way, Beddington Farm Road, Croydon, Surrey CR0 4TR

4. Enfield

Jeffreys Road, Enfield EN3 7UA

5. Feltham

Falcon Way Trading Estate, Feltham TW14 0UQ

Capital Concrete Brett House, St Michael's Close, Aylesford, Kent ME20 7XE

6. Rainham

Launders Lane, Rainham, Essex RM13 9GJ

7. Romford

Hainault Road, Little Heath, Romford, Essex RM6 5SS

8. Silvertown

Peruvian Wharf, North Woolwich Road, Silvertown E16 2AB

9. Staines

Ashford Road, Laleham, Middlesex TW18 1QF

10. Wembley

Neasden Rail Siding, The Rail Yard, Drury Way, London NW10 0JJ

To place an order or to talk to us about the requirements for your project please call our team on 020 3974 0520.

Capital Concrete Brett House, St Michael's Close, Aylesford, Kent ME20 7XE www.capitalconcrete.co.uk 020 3974 0520